Biochemical analysis of UV mutagenesis in Escherichia coli by using a cell-free reaction coupled to a bioassay: identification of a DNA repair-dependent, replication-independent pathway.
نویسندگان
چکیده
Incubation of UV-irradiated plasmid DNA with a protein extract prepared from Escherichia coli cells led to the production of mutations in the cro gene residing on the plasmid. The mutations were detected in a subsequent bioassay step, which involved transformation of an indicator strain with the plasmid DNA that was retrieved from the reaction mixture, followed by plating on lactose/MacConkey plates. UV mutations produced in this cell-free reaction required the recA and umuC gene products and were prevented by rifampicin, an inhibitor of RNA polymerase, which inhibited plasmid replication. Removal of pyrimidine photodimers from the plasmid by enzymatic photoreactivation after the in vitro stage, but prior to transformation, increased plasmid survival as expected. Surprisingly, it also caused a large increase in the frequency of UV mutations detected in the bioassay. This photoreactivation-stimulated in vitro UV mutagenesis was dependent on the excision repair genes uvrA, uvrB, and uvrC and occurred in the absence of DNA replication. This suggests that two distinct UV mutagenesis pathways occurred in vitro: a replication-dependent pathway (type I) and a repair-dependent pathway (type II). DNA sequence analysis of type II UV mutations revealed a spectrum similar to that of in vivo UV mutagenesis. When the photoreactivation step was included in the protocol, type II UV mutagenesis did not require the RecA and UmuC proteins. These results are in agreement with the in vivo delayed photoreactivation phenomenon, where the removal of photodimers after an incubation period eliminated the requirement for RecA and UmuC in UV mutagenesis. The above system will enable the biochemical analysis of UV mutagenesis and the isolation of proteins involved in the process.
منابع مشابه
Visualization of UV-induced replication intermediates in E. coli using two-dimensional agarose-gel analysis.
Inaccurate replication in the presence of DNA damage is responsible for the majority of cellular rearrangements and mutagenesis observed in all cell types and is widely believed to be directly associated with the development of cancer in humans. DNA damage, such as that induced by UV irradiation, severely impairs the ability of replication to duplicate the genomic template accurately. A number ...
متن کاملThe Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism.
Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1...
متن کاملUV- and MMS-induced mutagenesis of lambdaO(am)8 phage under nonpermissive conditions for phage DNA replication.
Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins,...
متن کاملNascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli.
DNA lesions that arrest replication can lead to rearrangements, mutations, or lethality when not processed accurately. After UV-induced DNA damage in Escherichia coli, RecA and several recF pathway proteins are thought to process arrested replication forks and ensure that replication resumes accurately. Here, we show that the RecJ nuclease and RecQ helicase, which partially degrade the nascent ...
متن کاملUV- and MMS-induced mutagenesis of O(am)8 phage under nonpermissive conditions for phage DNA replication
Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 89 8 شماره
صفحات -
تاریخ انتشار 1992